Homework 1

(Due date: September 25th)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (10 PTS)

• Calculate the result of the additions and subtractions for the following fixed-point numbers.

UNSI	GNED	SIGNED			
0.11010 +	1.00111 -	1.0001 +	0.0101 -		
1.0101101	1.0101101 0.0000111		1.0101101		
10.10101 +	100.1 +	1000.0101 -	101.0101 +		
1.1001	1.1001 0.10101		1.0111101		

PROBLEM 2 (10 PTS)

• Multiply the following signed fixed-point numbers:

01.001 ×	10.0001 ×	1100.001 ×	0.1101010 ×
1.001001	01.01001	10.010101	11.1111011

PROBLEM 3 (15 PTS)

• Get the division result (with x = 4 fractional bits) for the following signed fixed-point numbers:

101.001 ÷	10.011001 ÷	01001.001 ÷	0.1101010 ÷
1.001001	1.01101	10.101	010.110111

PROBLEM 4 (5 PTS)

We want to represent numbers between -128.7 and 179. What is the fixed point format that requires the fewest number of bits for a resolution better or equal than 0.0005?

PROBLEM 5 (10 PTS)

 Complete the table for the following floating point formats (which resemble the IEEE-754 standard) with 16, 24, 48 bits. Only consider ordinary numbers.

Exponent bits (E)	Significant bits (p)	Min	Мах	Range of e	Range of significand
6	9				
7	16				
10	37				

PROBLEM 6 (20 PTS)

• <u>Calculate the decimal values of the following floating point numbers represented as hexadecimals. Show your procedure.</u>

Single (32 bits)			Double (64 bits)			
✓	F8000378	✓ 800ABBAA	~	FA09D3784D089B7D	~	4974240040490FDB
✓	80DECADE	✓ FACEB0E8	✓	80DEADBEE9742400	\checkmark	FA09D37809ABC0DE
✓	FDEAD378	✓ 7FF32B5A	✓	8009D3787F888800	\checkmark	FF80000009ABC0DE
\checkmark	3DE38866	✓ ACCEDE78	\checkmark	FA0BEBE80BEEF0A0	\checkmark	DECAFC0FFEE00800

PROBLEM 7 (30 PTS)

 Calculate the result of the following operations with 32-bit floating point numbers. Truncate the results when required. When doing fixed-point division, use 8 fractional bits. Show your procedure.

\checkmark	FA000378 + FF800FAD	✓	CA09D378 - 80000000	✓	FA09D300 × 4D080000	✓	49742000 ÷ 40490000
\checkmark	7F800FEA + 09ABC0DE	✓	5A09D378 - 40490FDB	\checkmark	80000000 × 497424FE	\checkmark	80000000 ÷ 09ABC0DE
~	FC09D378 + 7F800000	✓	7DE32B5A - FF800000	\checkmark	FA09DF00 × 7F800000	\checkmark	FF800000 ÷ 09FE0000
~	3DE38866 + 3300D959	✓	FA09D378 - 09ABC0DE	~	7A09D300 × 0BEEF000	\checkmark	FA09D300 ÷ 48500000